
Journal of Global Optimization 21: 111–137, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

111

Finding independent sets in a graph using
continuous multivariable polynomial formulations

JAMES ABELLO1, SERGIY BUTENKO2, PANOS M. PARDALOS2,� and
MAURICIO G.C. RESENDE1

1Shannon Laboratory, AT&T Labs Research, Florham Park, NJ 07932 USA. (e-mails:
abello@research.att.com and mgcr@research.att.com
2Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611
USA. (e-mails: butenko@ufl.edu and pardalos@ufl.edu)

Abstract. Two continuous formulations of the maximum independent set problem on a graph
G = (V ,E) are considered. Both cases involve the maximization of an n-variable polynomial over
the n-dimensional hypercube, where n is the number of nodes in G. Two (polynomial) objective
functions F(x) and H(x) are considered. Given any solution to x0 in the hypercube, we propose
two polynomial-time algorithms based on these formulations, for finding maximal independent sets
with cardinality greater than or equal to F(x0) and H(x0), respectively. A relation between the
two approaches is studied and a more general statement for dominating sets is proved. Results
of preliminary computational experiments for some of the DIMACS clique benchmark graphs are
presented.

Key words: Maximum independent set, continuous approach, global optimization

1. Introduction

Let G = (V ,E) be a simple undirected graph with vertex set V = {1, . . . , n} and
set of edges E. The complement graph of G is the graph Ḡ = (V , Ē), where Ē is
the complement of E. For a subset W ⊂ V let G(W) denote the subgraph induced
by W on G. N(i) will denote the set of neighbors of vertex i and di = |N(i)| is
the degree of vertex i. We denote by � ≡ �(G) the maximum degree of G.

A subset I ⊂ V is called an an independent set (stable set, vertex packing) if
the edge set of the subgraph induced by I is empty. An independent set is maximal
if it is not a subset of any larger independent set, and maximum if there are no
longer independent sets in the graph. The independence number α(G) (also called
the stability number) is the cardinality of a maximum independent set in G.

Along with the maximum independent set problem, we consider some other
problems for graphs, namely the maximum clique, the minimum vertex cover, and
the maximum matching problems. A clique C is a subset of V such that the sub-
graph G(C) induced by C on G is complete. The maximum clique problem is to
� The author was partially supported by NSF under Grants DBI 9808210 and EIA 9872509

112 JAMES ABELLO ET AL

find a clique of maximum cardinality. The clique number ω(G) is the cardinality
of a maximum clique inG. A vertex cover V ′ is a subset of V , such that every edge
(i, j) ∈ E has at least one endpoint in V ′ is a subset of V , such that every edge
(i, j) ∈ E has at least one endpoint in V ′. The minimum vertex cover problem is
to find a vertex cover of minimum cardinality. Two edges in a graph are incident
if they have an endpoint in common. A set of edges is independent if no two of
them are incident. A set M of independent edges in a graph G = (V ,E) is called
a matching. The maximum matching problem is to find a matching of maximum
cardinality.

It is easy to see that I is a maximum independent set of G if and only if I is a
maximum clique of Ḡ and if and only if V \I is a minimum vertex cover of G. The
last fact yields Gallai’s identity (Gallai, 1959)

α(G)+ |S| = |V (G)|, (1)

where S is a minimum vertex cover of the graph G.
The maximum independent set, the maximum clique, and the minimum vertex

cover problems are NP-hard (Garey and Johnson, 1979), so it is unlikely that a
polynomial-time algorithm for computing the independence number of a graph
can be devised. Alternatively, the maximum matching problem can be solved in
polynomial time even for the weighted case (see, for instance, Papadimitriou and
Steiglitz, 1988).

König’s theorem (see p. 30 in Diestel, (1997) and Rizzi (2000) for a shorrt
proof) states that the maximum cardinality of a matching in a bipartite graph G is
equal to the minimum cardinality of a vertex cover.

Practical applications of these optimization problems are abundant. They appear
in information retrieval, signal transmission analysis, classification theory, eco-
nomics, scheduling, experimental design, and computer vision. See Abello et al.
(2000), Avondo-Bodeno (1962), Bomze et al. (1999), Balas and Yu (1986), Berge
(1962), Deo (1974), Pardalos and Xue (1992) and Trotter (1973) for details.

The remainder of this paper is organized as follows. In Section 2 we review
some integer programming and continuous formulations of the maximum inde-
pendent set problem. Two new polynomial formulations are proposed in Section 3.
In Section 4, we show how the Motzkin–Straus theorem can be obtained from
one of these formulations. Two algorithms that use the polynomial formulations to
find maximal independent sets are presented in Section 5. In Section 6, these two
algorithms are shown to be equivalent in some sense. Examples are presented in
Section 7. In Section 8, one of the polynomial formulations proposed in this paper
is extended for dominating sets. Preliminary computational results, illustrating the
approach, are described in Section 9. Finally, concluding remarks are made in
Section 10.

FINDING INDEPENDENT SETS IN A GRAPH 113

2. Problem formulations

The maximum independent set problem has many equivalent formulations as an
integer programming problem and as a continuous nonconvex optimization prob-
lem (Pardalos and Xue, 1992; Bomze et al., 1999). In this section we will give a
brief review of some existing approaches.

2.1. INTEGER PROGRAMMING FORMULATIONS

Given a vector w ∈ R
n of positive weights wi (associated with each vertex i, i =

1, . . . , n the maximum weight independent set problem asks for independent sets
of maximum weight. Obviously, it is a generalization of the maximum independent
set problem. One of the simplest formulations of the maximum weight independent
set problem is the following edge formulation:

max f (x) =
n∑
i=1

wixi, (2)

subject to

xi + xj � 1,∀(i, j) ∈ E, (2a)

xi ∈ {0, 1}, i = 1, . . . , n. (2b)

An alternative formulation of this problem is the following clique formulation
(Grötschel et al., 1993);

max f (x) =
n∑
i=1

wixi, (3)

subject to∑
i∈S
xi � 1,∀S ∈ C ≡ {maximal cliques ofG}, (3a)

xi ∈ {0, 1}, i = 1, . . . , n. (3b)

The advantage of formulation (3) over (2) is a smaller gap between the optimal val-
ues of (3) and its linear relaxation. However, since there is an exponential number
of constraints in (3a), finding an efficient solution of (3) is difficult.

We mention now one more integer programming formulation. Let AG be the
adjacency matrix of a graph G, and let J denote the n × n identity matrix. The
maximum independent set problem is equivalent to the global quadratic zero-one
problem

max f (x) = xT Ax, (4)

114 JAMES ABELLO ET AL

subject to

xi ∈ {0, 1}, i = 1, . . . , n, (4a)

where A = J − AG. If x∗ is a solution to (4), then the set I defined by I = {i ∈
V : x∗

i = 1} is a maximum independent set of G with |I | = f (x∗). See Pardalos
and Rodgers (1992) for details.

2.2. CONTINUOUS FORMULATIONS

Shor (1990) considered an interesting formulation of the maximum weight inde-
pendent set problem by noticing that formulation (2) is equivalent to the quadrat-
ically constrained global optimization problem

max f (x) =
n∑
i=1

wixi, (5)

subject to

xixj = 0, ∀(i, j) ∈ E, (5a)

x2
i − xi = 0, i = 1, 2, . . . , n. (5b)

Applying dual quadratic estimates, Shor reported good computational results and
presented a new way to compute the Lovász number of a graph (Lovász, 1979).

Motzkin and Straus (1965) established a remarkable connection between the
maximum clique problem and a certain standard quadratic progbramming problem.
The original proof of the Motzkin–Straus theorem was by induction. Below we
present a new proof. Let AG be the adjacency matrix of G and let e be the n-
dimensional vector with all components equal to 1.

THEOREM 1 (Motzkin–Straus). The global optimal value of the following quad-
ratic program

max f (x) = 1

2
xT AGx, (6)

subject to

eT x = 1, (6a)

x � 0. (6b)

is given by

1

2

(
1 − 1

ω(G)

)
,

where ω(G) is the clique number of G.

FINDING INDEPENDENT SETS IN A GRAPH 115

Proof. We will use the following well known inequality for the proof:

n∑
i=1

a2
i �

(
n∑
i=1

ai

)2

n
, (7)

where a1, a2, . . . , an are positive numbers. Equality takes place if and only if a1 =
a2 = · · · = an.

Now consider the program (6). Let J denote the n×n identity matrix and letO
be the n× n matrix of all ones. Then

AG = O − J − AḠ
and

yT AGy = yT Oy − yT Jy − yT AḠy = 1 − (yT Jy + yT AḠy),
where AḠ is the adjacency matrix of the complement graph Ḡ.

Let R(x) = xT Jx + xT AḠx. Program (8) is equivalent to (6).

minR(x) = xT Jx + xT AḠx, (8)

s.t. eT x = 1,

x � 0.

To check that there always exists an optimal solution x∗ of (8) such that x∗T AḠx∗+
0, consider any optimal solution x̂ of (8). Assume that x̂T AḠx̂ > 0. Then there
exists a pair (i, j) ∈ Ē such that x̂i x̂j > 0. Consider the following representation
for R(x):

R(x) = Rij (x)+ R̄ij (x),
where

Rij (x) = x2
i + x2

j + 2xixj + 2xi
∑

(i,k)∈Ē,k �=j
xk + 2xj

∑
(j,k)∈Ē,k �=i

xk;

R̄ij (x) = R(x)− Rij (x).
Without loss of generality, assume that∑

(i,k)∈Ē,k �=i
x̂k �

∑
(j,k)∈Ē,k �=j

x̂k.

Then, if we set

x̃k =

x̂i + x̂j , if k = i,
0, if k = j,
x̂k, otherwise,

116 JAMES ABELLO ET AL

we have:

R(x̃) =Rij (x̃)+ R̄ij (x̃)
= (x̂i + x̂j)2 + 2(x̂i + x̂j) ·

∑
(i,k)∈Ē,k �=i

x̂k

� x̂2
i + x̂2

j + 2x̂i x̂j + 2x̂i ·
∑

(i,k)∈Ē,k �=j
x̂k + 2x̂j ·

∑
(j,k)∈Ē,k �=i

x̂k = R(x̂).

If we denote by Z(x) = {(i, j) ∈ Ē : xixj > 0}, then x̃ is an optimal solution
of (8) with |Z(x̃)| < |Z(x̂)|. Repeating this procedure a finite number of times
we will finally obtain an optimal solution for x∗ for which |Z(x∗)| = 0 and thus
x∗T AḠx∗ = 0.

Note that x∗T AḠx∗ = 0 if and only if ∀(i, j) ∈ Ē : x∗
i x

∗
j = 0. This means that

if we consider the set C = {i : x∗
i > 0} then C is a clique.

Without loss of generality, assume that x∗
i > 0 for i = 1, 2, . . . , m. and x∗

i = 0
for m+ 1 � i � n. Consider the objective function of (8),

R(x∗) = x∗T J x∗ =
m∑
i=1

x∗2
i .

By inequality (7) and the feasibility of x∗ for (8),

n∑
i=1

x∗2
i �

(
n∑
i=1

x∗
i

)

m
= 1

m
.

Since C is a clique of cardinality m, it follows m � ω(G) and

R(x∗) � 1

m
� 1

ω(G)
.

On the other hand, if we consider

x∗
k =

1

ω(G)
, if k ∈ C∗,

0, otherwise,

where C∗ is a maximum clique of G, then x∗ is feasible and R(x∗) = 1/ω(G).
Thus x∗ is an optimal solution of (8). Returning back to the original quadratic
program, the result of the theorem follows. �
This result is extended in Gibbons et al. (1997), by providing a characterization of
maximal cliques in terms of local solutions. Moreover, optimality conditions of the
Motzkin–Straus program have been studied and properties of a newly introduced

FINDING INDEPENDENT SETS IN A GRAPH 117

parameterization of the corresponding QP have been investigated. A further gen-
eralization of the same theorem to hypergraphs can be found in (Sós and Straus,
1982).

3. Polynomial formulations

In this section we consider some of the continuous formulations proposed in (Har-
ant, 2000; Harant et al., 1999). We prove deterministically that the independence
number of a graph G can be characterized as an optimization problem based on
these formulations. Probabilistic proofs of these results were given in (Harant,
2000; Harant et al., 1999). We consider two polynomial formulations, a degree
(�+ 1) formulation and a quadratic formulation.

3.1. DEGREE (�+ 1) POLYNOMIAL FORMULATION

Consider the degree (�+ 1) polynomial of n variables

F(x) =
n∑
i=1

(1 − xi)
∏
(i,j)∈E

xj , x ∈ [0, 1]n.

The following theorem characterizes the independence number of the graph G as
the maximization of F(x) over the n-dimensional hypercube.

THEOREM 2 LetG = (V ,E) be a simple graph on n nodes V = {1, . . . , n} and
set of edges E, and let α(G) denote the independence number of G. Then

α(G) = max
0�xi�1,i=1,... ,n

F (x)

= max
0�xi�1,i=1,... ,n

n∑
i=1

(1 − xi)
∏
(i,j)∈E

xj , (P1)

where each variable xi corresponds to node i ∈ V .
Proof. Denote the optimal objective function value by f (G), i.e.

f (G) = max
0�xi�1,i=1,... ,n

F (x)

= max
0�xi�1,i=1,... ,n

n∑
i=1

(1 − xi)
∏
(i,j)∈E

xj . (9)

We want to show that α(G) = f (G).
First we show that (9) always has an optimal 0-1 solution. This is so because

F(x) is a continuous function and [0, 1]n = {(x1, x2, . . . , xn) : 0 � xi � 1, i =
1, . . . , n} is a compact set. Hence, there always exists x∗ ∈ [0, 1]n such that
F(x∗) = max0�xi�1,i=1,... ,n F (x).

118 JAMES ABELLO ET AL

Now, fix any i ∈ V . We can rewrite F(x) in the form

F(x) = (1 − xi)Ai(x)+ xiBi(x)+ Ci(x), (10)

where

Ai(x) =
∏
(i,j)∈E

xj , (11)

Bi(x) =
∑
(i,k)∈E

(1 − xk)
∏

(k,j)∈E,j �=i
xj , (12)

Ci(x) =
∑
(i,k) �∈E

(1 − xk)
∏

(k,j)∈E
xj . (13)

Expressions (11)–(13) can be interpreted in terms of neighborhoods. Ai(x) and
Bi(x) characterize the first- and the second-order neighborhoods of vertex i, re-
spectively, and Ci(x) is complementary to Bi(x) with respect to i in the sense that
it describes neighborhoods of all vertices, other than i, which are not characterized
by Bi(x).

Notice that xi is absent in (11)–(13), and therefore F(x) is linear with respect to
each variable. It is also clear from the above representation that if x∗ is any optimal
solution of (9), then x∗

i = 0 if Ai(x∗) > Bi(x∗), and x∗
i = 1, if Ai(x∗) < Bi(x∗).

Finally, if Ai(x∗) = Bi(x
∗), we can set x∗

i = 1. This shows that (9) always has an
optimal 0–1 solution.

To show that f (G) � α(G), assume that α(G) = m and let I be a maximum
independent set. Set

x∗
i =

{
0, if i ∈ I ;
1, otherwise.

(14)

Then, f (G) = max0�xi�1,i=1,... ,n F (x) � F(x∗) = m = α(G).
To complete the proof, we need to show that f (G) � α(G). Since the con-

sidered problem always has an optimal 0–1 solution, it follows that f (G) must
be integer. Assume f (G) = m and take any optimal 0–1 solution of (9). Without
loss of generality we can assume that this solution is x∗

1 = x∗
2 = · · · = x∗

k = 0;
x∗
k+1 = x∗

k+2 = · · · = x∗
n = 1, for some k. Then we have:

(1 − x∗
1)

∏
(1,j)∈E

x∗
j + (1 − x∗

2)
∏

(2,j)∈E
x∗
j + · · · + (1 − x∗

k)
∏

(k,j)∈E
x∗
j = m (15)

Each term in (15) is either 0 or 1. Therefore k � m and there exists a subset
I ⊂ {1, . . . , k} such that |I | = m and

∀i ∈ I :
∏
(i,j)∈E

x∗
j = 1.

FINDING INDEPENDENT SETS IN A GRAPH 119

Therefore, if (i, j) ∈ E, then x∗
j = 1. Note that since x∗

1 = x∗
2 = · · · = x∗

k = 0,
it follows that ∀{i, j} ⊂ I we have (i, j) �∈ E and so I is an independent set by
definition. Thus, α(G) � |I | = m = f (G), which completes the proof. �
COROLLARY 1 The clique number ω(G) in a simple undirected graph G =
(V ,E) satisfies

ω(G) = max
0�xi�1,i=1,... ,n

n∑
i=1

(1 − xi)
∏

(i,j) �∈E,i �=j
xj .

Proof. The result follows from Theorem 2 and Gallai’s identity (1). �
COROLLARY 2 The size |M| of a maximum matching M in a bipartite graph
G = (V ,E) satisfies

|M| = n− max
0�xi�1,i=1,... ,n

n∑
i=1

(1 − xi)
∏
(i,j)∈E

xj .

Proof. The statement follows from Corollary 2 and König’s theorem. �

3.2. QUADRATIC POLYNOMIAL FORMULATION

Consider now the quadratic polynomial

H(x) =
n∑
i=1

xi −
∑
i,j)∈E

xixj ,

defined for x ∈ [0, 1]n.
The following theorem characterizes the independence number of the graph G

as the maximization of H(x) over the n-dimensional hypercube.

THEOREM 3 LetG = (V ,E) be a simple graph on n nodes V = {1, . . . , n} and
set of edges E, and let α(G) denote the independence number of G. Then

α(G) = max
0�xi�1,i=1,... ,n

H(x)

= max
0�xi�1,i=1,... ,n

 n∑
i=1

xi −
∑
(i,j)∈E

xixj

 , (P2)

where each variable xi corresponds to node i ∈ V .

120 JAMES ABELLO ET AL

Proof. Denote the optimal objective funcrtion value by h(G), i.e.

h(G) = max
0�xi�1,i=1,... ,n

 n∑
i=1

xi −
∑
(i,j)∈E

xixj

 (16)

and let I be a maximum independent set. To prove that h(G) � α(G), let

x∗
i =

{
1, if i ∈ I ;
0, otherwise.

(17)

Since I is an independent set and x∗
i = 0 for i �∈ I , then

∑
(i,j)∈E x

∗
i x

∗
j = 0.

Furthermore,
∑n
i=1 x

∗
i = |I | = α(G). This yields h(G) � H(x∗) = α(G).

To complete the proof, we need to show that h(G) � α(G). Assume h(G) = m.
Since H(x) is linear with respect to each variable, problem (16) always has an
optimal 0–1 solution. Take any optimal 0–1 solution x of (16). Suppose, that there
exists (i0, j0) ∈ E such that xi0 = xj0 = 1. Changing xi0 to 0 decreases

∑n
i=1 xi

by 1 and decreases
∑
(i,j)∈E xixj by at least 1. Thus, the objective function will not

decrease. Doing this for all such pairs (i0, j0)will finally lead to an optimal solution
x∗ such that ∀(i, j) ∈ E : x∗

i x
∗
j = 0, and an independent set I = {i : x∗

i = 1} of
cardinality h(G). This yields h(G) � α(G) and the theorem is proved. �

4. Motzkin–Straus revisited

The next statement is a reformulation the Motzkin–Straus theorem for the max-
imum independent set problem. We show how it can be obtained from formulation
(P2).

THEOREM 4 The global optimal value of the following quadratic program,

max f (x) = 1

2
xT AḠx, (18)

subject to

eT x = 1, (18a)

x � 0 (18b)

is given by

1

2

(
1 − 1

α(G)

)
,

where α(G) is the independence number of G.

FINDING INDEPENDENT SETS IN A GRAPH 121

Proof. Consider formulation (P2):

α(G) = max
0�xi�1,i=1,... ,n

(
eT x − 1

2
xT AGx

)
.

Note that changing the feasible region from [0, 1]n in the last quadratic program to
the following

{x � 0 : eT x = α(G)}
does not change the optimal objective function value. Changing the variables to
y = 1

α(G)
x, we obtain:

α(G) = max

(
α(G)eT y − 1

2
α(G)2yT AGy

)
(19)

subject to

eT y = 1,

y � 0.

If I is a maximum independent set of G, then

y∗
i =

1

α(G)
, if i ∈ I

0, otherwise,

is an optimal solution for the last program.
Consider now

AG = O − J − AḠ.
We have

yT AGy = yT Oy − yT Jy − yT AḠy = 1 − yT Jy − yT AḠy,
where AḠ is the adjacency matrix of the complement graph Ḡ. If F = {y � 0 :
eT y = 1}, then (20) can be rewritten as

α(G) = max
y∈F

(
α(G)+ 1

2
α(G)2(−1 + yT Jy + yT AḠy)

)

which yields

1 = max
y∈F
(yT Jy + yT AḠy).

Since the maximum is reached in y∗, we have

1 − 1

α(G)
= y∗T AḠy

∗ � max
y∈F

yT AḠy.

122 JAMES ABELLO ET AL

Now assume that for some ŷ,

ŷT AḠŷ = max
y∈F

yT AḠy > 1 − 1

α(G)
.

Then there exists ỹ with |{(i, j) ∈ E : ỹi ỹj > 0}| = 0 such that ỹT AḠỹ � ŷT AḠŷ.
For ỹ we have

1 − ỹT J ỹ � ŷT AḠŷ > 1 − 1

α(G)
,

which yields

ỹT J ỹ <
1

α(G)
,

Then, from (7), we obtain

1

|{i : ỹi > 0}| � ỹT J ỹ < 1

α(G)
.

Note that I = {i : ỹi > 0} is an independent set and the last inequality implies
|I | > α(G), which contradicts the definition of α(G). Thus, maxy∈F yT AḠy =
1 − 1

α(G)
. �

5. Algorithms for finding maximal independent sets

In this section, we discuss two algorithms for finding maximal independent sets
using the formulations discussed in Section 3.

5.1. AN ALGORITHM BASED ON FORMULATION (P1)

We discuss the algorithm proposed in Harant et al. (1999). As pointed out before,
the function F(x) is linear with respect to each variable, so Ai(x) and Bi(x) can
be computed for any i ∈ {1, 2, . . . , n}. To produce a maximal independent set
using F(x), first let x0 ∈ [0, 1]n be any starting point. The procedure described
below produces a sequence of n points x1, x2, . . . , xn such that xn corresponds to
a maximal independent set. Let V = {1, 2, . . . , n} and consider some i ∈ V . From
(10)–(13) it follows that if we set

x1
i =

{
0, if Ai(x0) > Bi(x

0);
1, otherwise.

and x1
j = x0

j , if j �= i, we obtain for the point x1 = (x1
1 , x

1
2 , . . . , x

1
n) that F(x1) �

F(x0).

FINDING INDEPENDENT SETS IN A GRAPH 123

If we update V = V\{i}, we can construct the next point x2 from x1 in the same
manner. Running this procedure n times, we obtain a point xn which satisfies the
inequality.

F(xn) � F(x0),

The following theorem states that xn has an independent set associated with it.

THEOREM 5 If I = {i ∈ {1, 2, . . . , n} : xni = 0}, then I is an independent set.
Proof. Consider any (i, j) ∈ E. We need to show, that {i, j} is not a subset of

I . Without loss of generality, assume that we check xi on the kth iteration of the
above procedue. If xki = 1, then i �∈ I . Alternatively, if xki = 0, i.e. i ∈ I , we need
to show that j �∈ I . Let l > k be an iteration on which we check xj . Then

Aj(x
l−1) =

∏
(i,j)∈E

xi = 0,

and therefore Aj(xl−1) � Bj(xl−1) and xlj = 1, which implies that j �∈ I . �
From the discussion above, we have the following algorithm to find a maximal

independent set.

Algorithm 1:
INPUT: x0 ∈ [0, 1]n
OUTPUT: Maximal independent set I

0. v := x0;
1. for i = 1, . . . , n do if Ai(v) > Bi(v) then vi := 0, else vi := 1;
2. for i = 1, . . . , n do if Ai(v) = 1 then vi = 0;
3. I = {i ∈ {1, 2, . . . , n} : vi = 0};

END

THEOREM 6 Algorithm 1 is correct.
Proof. We have already discussed steps 1 and 3 of the algorithm which guarantee

that an independent set is produced. We need to show that step 2 guarantees that
the independent set is maximal. Indeed, assume that after running step 1 we have,
for some index i, vi = 1 and

Ai(v) =
∏
(i,j)∈E

vj = 1.

This means that neither i nor any node from the neighborhood of i is included in the
independent set that we obtained after step 1. Thus, we can increase the cardinality
of this set including i in it by setting vi = 0. �

The time complexity of the proposed algorithm is O(�2n), since Ai(v) and
Bi(v) can be calculated in O(�2) time.

124 JAMES ABELLO ET AL

5.2. AN ALGORITHM BASED ON FORMULATION (P2)

We now focus our attention on an algorithm, similar to Algorithm 1, based on
formulation (P2)

Algorithm 2:
INPUT: x0 ∈ [0, 1]n
OUTPUT: Maximal independent set I

0. v := x0;
1. for i = 1, . . . , n do if

∑
(i,j)∈E vj < 1 then vi := 1, else vi := 0;

2. for i = 1, . . . , n do if
∑
(i,j)∈E vj = 0 then vi = 1;

3. I = {i ∈ {1, 2, . . . , n} : vi = 1};
END

THEOREM 7 Algorithm 2 is correct.
Proof. Algorithm 2 is similar to Algorithm 1. In step 1 it finds an independent

set I1 = {i ∈ {1, 2, . . . , n} : vi = 1}. Set I1 is independent because after step 1 we
have that ∀(i, j) ∈ E such that i < j , if vi = 1 then

∑
(j,k)∈E vk � 1 and vj = 0. If

I1 is not a maximal independent set, then there exists i such that vi+∑(i,j)∈E vj =
0. We can increase the cardinality of I1 by one, including i in it, by setting vi = 1
in step 2. The resulting set is independent, because

∑
(i,j)∈E vj = 0, which requires

that ∀j such that (i, j) ∈ E : vj = 0. Thus no neighbors of i are included in the
set. �
The time complexity of this algorithm is O(�n).

6. An interesting observation

In this section, we study a relation between Algorithm 1 and Algorithm 2.
If we define

F ′(x) = max
0�xi�1,i=1,... ,n

n∑
i=1

xi
∏
(i,j∈E

(1 − xj),

then formulation (P1) can be rewritten as

α(G) = max
0�xi�1,i=1,... ,n

F ′(x)

= max
0�xi�1,i=1,... ,n

n∑
i=1

xi
∏
(i,j)∈E

(1 − xj). (P1′)

The following theorem offers an alternate characterization of the independence
number of a graph G.

FINDING INDEPENDENT SETS IN A GRAPH 125

THEOREM 8 The independence number of G = (V ,E) can be characterized as

α(G) = max
0�xi�1,i=1,... ,n

H ′(x) =
n∑
i=1

xi

1 −

∑
(i,j)∈E

xj

 .

Proof. We first show that max0�xi�1,i=1,... ,n H
′(x) � α(G). For any x ∈ [0, 1]n,

we have

H ′(x) =
n∑
i=1

xi − ∑

(i,j)∈E
xixj

=
n∑
i=1

xi − 2
∑
(i,j)∈E

xixj

� H(x)
� α(G).

Thus, max
0�xi�1,i=1,... ,n

H ′(x) � α(G).
To show that max

0�xi�1,i=1,... ,n
H ′(x) � α(G), let I be an independent set, and

consider

x∗
i =

{
1, if i ∈ I ;
0, otherwise.

Then H ′(x∗) = H(x∗) = α(G), which yields max
0�xi�1,i=1,... ,n

H ′(x) � α(G). This

completes the proof. �
Consider a logical expression, which can be obtained from H ′(x) by changing
arithmetic operations to logical ones as follows. Summation is changed to

∨
(lo-

gical OR); product is changed to
∧

(logical AND); and 1 − xi is changed to xi
(logical negation). Then, we have

n∨
i=1

xi∧

 ∨
(i,j)∈E

xj

 =

n∨
i=1

xi∧

 ∧
(i,j)∈E

xj

 . (21)

Changing logical operations in (21) back to arithmetic operations, we obtain the
expression for F ′(x).

Now consider Algorithms 1 and 2. Since (P1′) is obtained from (P1) by chan-
ging all variables xi to 1 − xi , we can derive an algorithm for finding maximal
independent sets based on (P1′) from Algorithm 1 by changing v = (v1, . . . , vn)

to v′ = (v′
n) = (1 − v1, . . . , 1 − vn) as follows.

126 JAMES ABELLO ET AL

Algorithm 1′:
INPUT: x0 ∈ [0, 1]n
OUTPUT: Maximal independent set I

0. v := x0;
1. for i = 1, . . . , n do if A′

i(v) > B
′
i(v) then vi := 1, else vi := 0;

2. for i = 1, . . . , n do if A′
i(v) = 1 then vi := 1;

3. I = {i ∈ {1, 2, . . . , n} : vi = 1};
END

In Algorithm 1′

A′
i (v) = Ai(v′) =

∏
(i,j)∈E

(1 − vj);

B ′
i(v) = Bi(v′) =

∑
(i,k)∈E

vk
∏

(k,j)∈E,i �=j
(1 − vj).

We have A′
i (v) > B

′
i (v) if and only if

1 − [B ′
i (v)+ (1 − A′

i(v))] > 0. (22)

Then, logical expression L11 corresponding to the left-hand side of (22) is

L11 =
[
B ′
i(v)

∨
A′
i (v)

]
= B ′

i(v)
∧
A′
i (v).

Since A′
i (v) =

∧
(i,j)∈E

vj and

B ′
i (v) =

∧
(i,k)∈E

vk ∧

(k,j)∈E,i �=j
vj

 =

∧
(i,k)∈E

vk ∨

(k,j)∈E,i �=j
vj

 ,

we have

L11 =

 ∧
(i,k)∈E

vk ∨

(k,j)∈E,i �=j
vj

∧

 ∧
(i,j)∈E

vj

 =

∧
(i,j)∈E

vj .

The logical expression L21 corresponding to the left-hand side of the inequality
1 −∑

(i,j)∈E vj from step 1 of Algorithm 2 is:

L21 =

 ∨
(i,j)∈E

vj

 =

∧
(i,j)∈E

vj = L11,

Similarly, the logical expression L12 corresponding to the left-hand side of the
equality 1 − A′

i (v) = 0 taken from step 2 of Algorithm 1′ can be written as

L12 = [A′
i (v)] =

 ∧
(i,j)∈E

vj

 =

∨
(i,j)∈E

vj = L22,

FINDING INDEPENDENT SETS IN A GRAPH 127

where L22 is the logical expression corresponding to the left-hand side of the
equality from step 2 of Algorithm 2.

This shows that Algorithms 1 and 2 are syntactically related by substituting
each variable vj by 1 − vj , for j = 1, . . . , n in Algorithm 1.

7. Examples

The algorithms presented build a maximal independent set from any given point
x0 ∈ [0, 1]n in polynomial time. The output, however, depends on the choice of
x0. An interesting question that arises is how to choose such input point x0, so
that a maximum independent set can be found? The problem of finding such a
point cannot be solved in polynomial time, unless P = NP. A related question is to
improve the lower bound on the independence number. The best known bound, by
Caro and Tuza, Wei (1991, 1981), is expressed by

α(G) �
∑
i∈V

1

di + 1
.

Though we are unaware of a way to improve this bound using formulations (P1) or
(P2), we can show on simple examples that in some cases even starting with a ‘bad’
starting point x0(F (x0) � 1 or H(x0) � 1), we obtain a maximum independent
set as the output.

7.1. EXAMPLE 1

Consider the graph in Figure 1. For this example

x = (x1, x2, x3, x4) ∈ [0, 1]4;
F(x) = (1 − x1)x2x3x4 + (1 − x2)x1 + (1 − x3)x1 + (1 − x4)x1;
A1(x) = x2x3x4;
B1(x) = (1 − x2)+ (1 − x3)+ (1 − x4);
A2(x) = A3(x) = A4(x) = x1;
B2(x) = (1 − x1)x3x4;
B3(x) = (1 − x1)x2x4;
B4(x) = (1 − x1)x2x3;
H(x) = x1 + x2 + x3 + x4 − x1x2 − x1x3 − x1x4.

Consider Algorithm 1 with x0 = (1
2 ,

1
2 ,

1
2 ,

1
2). Since A1(x

0) = 1
8 , B1(x

0) = 3
2 , and

since 1
8 <

3
2 , the next point is x1 = (1, 1

2 ,
1
2 ,

1
2).

Next, A2(x
1) = 1, B2(x

1) = 0, and x2 = (1, 0, 1
2 ,

1
2). After two more iterations

we get x4 = (1, 0, 0, 0) with I = {2, 3, 4}, which is the maximum independent

128 JAMES ABELLO ET AL

Figure 1. Example 1

Figure 2. Example 2

set of the given graph. We have |I | = 3, F(x0) = 13
16 , and the objective function

increase is |I | − F(x0) = 35
16 .

For Algorithm 2, starting with x0 = (1, 1, 1, 1), for which H(x0) = 1, we
obtain the maximum independent set after step 1. Note, that the Caro–Wei bound
for this graph is 7

4 .

7.2. EXAMPLE 2

For the graph in Figure 2, we have x = (x1, x2, x3, x4, x5) ∈ [0, 1]5 and

F(x) = (1 − x1)x2x3 + (1 − x2)x1x3x4 + (1 − x3)x1x2x5

+ (1 − x4)x2 + (1 − x5)x3.

Applying Algorithm 1 for this graph with initial point x0 = (1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2), we

obtain, at the end of step 1, the solution x5 = (1, 1, 1, 0, 0), which corresponds to

FINDING INDEPENDENT SETS IN A GRAPH 129

Figure 3. Example 3

the independent set I = {4, 5}. At the end of step 2, the solution is (0, 1, 1, 0, 0),
which corresponds to the maximum independent set I = {1, 4, 5}. For this case we
have |I | = 3, F(x0) = 7

8 , and the objective function improvement is 17
8 . With the

initial point x0 = (0, 0, 0, 0, 0), H(x0) = 0, and Algorithm 2 finds the maximum
independent set after step 1. For this example, the Caro–Wei bound equals 11

6 .

7.3. EXAMPLE 3

This example shows, that the output of Algorithm 1 and Algorithm 2 depends not
only on initial point x0, but also on the order in which we examine variables in steps
1 and 2. For example, if we consider the graph from Figure 1 with a different order
of nodes (as in Figure 3), and run Algorithm 1 and Algorithm 2 for this graph with
initial point x0 = (1, 1, 1, 1), we obtain I = {4} as output for both algorithms. Note
that, for the graph from Figure 1, both outputs would be the maximum independent
set of the graph.

As Example 3 shows, we may be able to improve both algorithms by including
two procedures (one for each step) which, given a set of remaining nodes, choose
a node to be examined next. Consider Algorithm 2. Let index1() and index2()
be procedures for determining the order of examining nodes on step 1 and step 2
of the algorithm, respectively. Then we have the following algorithm

Algorithm 3:
INPUT: x0 ∈ [0, 1]n
OUTPUT: Maximal independent set I

0. c := x0;V1 := V ;V2 := V ;
1. while V1 �= ∅ do

a) = index1(V1);
b) if

∑
(k,j)∈E

xj < 1 then vk := 1, else vk := 0;

130 JAMES ABELLO ET AL

c) V1 : V1\{vk};
2. while V2 �= ∅ do

a) k = index2(V2);
b) if

∑
(k,j)∈E

vj = 0 then vk := 1;

c) V2 := V2\{vk};
3. I = {i ∈ {1, 2, . . . , n} : vi = 1};

END
In general, procedures index1() and index2() can be different. We propose the
same procedure index() for index1() and index2():

index(V0 = argmax
k∈V0

∑
(k,j)∈E

vj

breaking ties in favor of the node with the smallest neighborhood in V \V0 and at
random if any nodes remain tied.

8. A generalization for dominating sets

For a graph G = (V ,E) with V = {1, . . . , n}, let l = (k1, . . . , kn) be a vector of
integers such that 1 � ki � di for i ∈ V , where di is the degree of vertex i ∈ V .
An l-dominating set (Harant et al., 1999) is a set Dl ⊂ V such that every vertex
i ∈ V \Dl has at least ki neighbors in Dl . The l-domination number γl(G) of G is
the cardinality of a smallest l-dominating set of G.

For k1 = · · · = kn = 1, l-domination corresponds to the usual definition of
domination. The domination number γ (G) of G is the cardinality of a smallest
dominating set ofG. If ki = di for i = 1, . . . , n, then I = V \Dl is an independent
set and γd(G) = n− α(G) with d = (d1, . . . , dn).

The following theorem characterizes the domination number. A probabilistic
proof of this theorem is found in Harant et al. (1999).

THEOREM 9 The domination number can be expressed by

γl(G) = min
0�xi�1,i=1,... ,n

fl(x) = min
0�xi�1,i=1,... ,n

n∑
i=1

xi +
n∑
i=1

(1 − xi)

×

ki−1∑
p=0

∑
{i1,...ip}⊂N(i)

∏
m∈{i1,... ,ip}

xm
∏

m∈N(i)\{i1,... ,ip}
(1 − xm)

 . (23)

FINDING INDEPENDENT SETS IN A GRAPH 131

Proof. Denote the objective function by g(G), i.e.

g(G) = min
0�xi�1,i=1,... ,n

n∑
i=1

xi +
n∑
i=1

(1 − xi)

×

ki−1∑
p=0

∑
{i1,...ip}⊂N(i)

∏
m∈{i1,... ,ip}

xm
∏

m∈N(i)\{i1,... ,ip}
(1 − xm)

 . (24)

We want to show that γl(G) = g(G).
We first show that (24) always has an optimal 0–1 solution. Since fl(x) is a

continuous function and [0, 1]n = {(x1, x2, . . . , xn) : 0 � xi � 1, i = 1, . . . , n} is
a compact set, there always exists x∗ ∈ [0, 1]n such that fl(x∗) = min0�xi�1,i=1,... ,n

fl(x). The statement follows from linearity of fl(x) with respect to each variable.
Now we show that g(G) � γl(G). Assume γl(G) = m. Set

xli =
{

1, if i ∈ Dl;
0, otherwise.

Then, g(G) = min0�xi�1,i=1,... ,n fl(x) � fl(xl) = m = γl(G).
Finally, we show that g(G) � γl(G). Since (24) always has an optimal 0–1

solution, then g(G) must be integer. Assume g(G) = m. Take an optimal 0–1
solution x∗ of (23), such that the number of 1s is maximum among all 0–1 optimal
solutions. Without loss of generality we can assume that this solution is x∗

1 = x∗
2 =

· · · = x∗
r = 1; x∗

r+1 = x∗
r+2 = · · · = x∗

n = 0, for some r. Let

Qi(x) =
ki−1∑
p=0

∑
{i1,...ip}⊂N(i)

∏
m∈{i1,... ,ip}

xm
∏

m∈N(i)\{i1,... ,ip}
(1 − xm)

and

Q(x) =
n∑

i=r+1

(1 − xi)×

ki−1∑
p=0

∑
{i1,...ip}⊂N(i)

∏
m∈{i1,... ,ip}

xm
∏

m∈N(i)\{i1,... ,ip}
(1 − xm)

 .

Let

Dl = {i : x∗
i = 1}.

We have

r +Q(x∗) = m.
From the last expression and nonnegativity ofQ(x) it follows that |Dl| = r � m.

We want to show that Dl is an l-dominating set. Assume that it is not. Let
S = {i ∈ V \Dl : |N(i) ∩Dl| < ki}. Then S �= ∅ and ∀i ∈ S : Qi(x∗) � 1. Note,

132 JAMES ABELLO ET AL

that changing x∗
i , i ∈ S from 0 to 1 will increase

∑n
i=1 x

∗
i by 1 and will decrease

Q(x∗) by at least 1, thus it will not increase the objective function.
Consider D∗

l = Dl ∪ S and build x′ as follows:

x′
i =

{
1, if i ∈ D∗

l ;
0, otherwise.

Then fl(x′) � fl(x
∗) and |{i : x′

i = 1}| > |{i : x∗
i = 1}|, which contradicts

the assumption that x∗ is an optimal solution with the maximum number of 1’s.
Thus, Dl is an l-dominating set with cardinality r � m = g(G) and therefore
γl(G) � g(G). This concludes the proof of the theorem. �
COROLLARY 3 For the case in which k1 = · · · = kn = 1, we have

γ (G) = min
0�xi�1,i=1,... ,n

n∑
i=1

xi + (1 − xi)

∏
(i,j)∈E

(1 − xj)

 .

COROLLARY 4 For the case ki = di , i = 1, . . . , n, the result of Theorem 2
follows.

Proof. It can be shown by induction for |N(i)|, that

di−1∑
p=0

∑
{i1,...pi }⊂N(i)

∏
m∈{i1,... ,p}

xm
∏

m∈N(i)\{i1,... ,ip}
(1 − xm) = 1 −

∏
j∈N(i)

xj .

Thus,

α(G) = n− min
0�xi�1,i=1,... ,n

n∑
i=1

xi + (1 − xi)

1 −

∏
(i,j)∈E

xj

= max
0�xi�1,i=1,... ,n

n∑
i=1

(1 − xi)
∏
(i,j)∈E

xj . �

9. Computational experiments

This section presents preliminary computational results of the algorithms described
in this paper. Please notice that the results are very inconclusive at this point. We
have tested the algorithms on some of the DIMACS clique instances which can
be downloaded from the URL http://dimacs.rutgers.edu/Challenges/. All
algorithms are programmed in C and compiled and executed on an Intel Pentium
III 600 Mhz PC under MS Windows NT.

FINDING INDEPENDENT SETS IN A GRAPH 133

Table 1. Results on benchmark instances: Algorithms 1 and 2, random x0.

Name Nodes Density ω(G) Sol. Found Average Sol. Time (sec.)

A1 A2 A1 A2 A1 A2

MANN_a9 45 0.927 16 15 16 13.05 14.45 0.01 0.01

MANN_a27 378 0.009 126 113 120 68.16 119.16 8.14 1.89

MANN_a45 1035 0.996 345 283 334 198.76 331.66 243.94 36.20

c-fat200-1 200 0.777 12 12 12 10.80 12.00 33.72 0.33

c-fat200-2 200 0.163 24 24 24 22.22 22.59 31.43 0.32

c-fat200-3 200 0.426 58 58 58 57.14 57.85 17.60 0.28

hamming6-2 64 0.905 32 32 32 30.17 21.44 0.06 0.01

hamming6-4 64 0.349 4 4 4 3.72 2.38 0.37 0.01

hamming8-2 256 0.969 128 128 121 119.54 90.95 6.45 1.07

hamming8-4 256 0.639 16 16 16 10.87 9.71 38.22 1.43

hamming10-2 1024 0.990 512 503 494 471.17 410.92 233.45 46.46

johnson8-2-4 28 0.556 4 4 4 4.00 4.00 0.01 0.01

johnson8-4-4 70 0.768 14 14 14 13.02 9.99 0.17 0.01

johnson16-2-4 120 0.765 8 8 8 8.00 8.00 1.13 0.04

johnson32-2-4 496 0.879 16 16 16 16.00 16.00 186.77 4.57

keller4 171 0.649 11 7 7 7.00 7.00 9.72 0.13

san200_0.9_1 200 0.900 70 53 61 39.08 38.86 0.14 0.14

san200_0.9_2 200 0.900 60 34 32 29.41 29.09 0.14 0.13

san200_0.9_3 200 0.900 44 31 30 27.58 26.93 0.23 0.18

san400_0.9_1 400 0.900 100 53 54 46.18 44.20 4.54 2.68

First, each algorithm was executed 100 times with random initial solutions
uniformly distributed in the unit hypercube. The results of these experiments are
summarizede in Tables 1 and 2. The columns ‘Name,’ ‘Nodes,’ ‘Density,’ and
‘ω(G)’ represent the name of the graph, the number of its nodes, its density, and its
clique number, respectively. This information is available from the DIMACS web
site. The column ‘Sol. Found’ contains the size of the largest clique found after
100 runs. The columns ‘Average Sol.’ and ‘Time (s)’ contain average solution and
average CPU time (in seconds) taken over 100 runs of an algorithm, respectively.
Finally, columns ‘A1’ and ‘A2’ in Table 1 represent Algorithms 1 and 2.

Table 3 contains the results of computations for all the algorithms with initial
solution x0, such that x0

i = 0, i = 1, . . . , n. In this table, ‘A3’ stands for Algorithm

134 JAMES ABELLO ET AL

Table 2. Results on benchmark instances: Algorithm 3, random x0.

Name Nodes Dens. ω(G) Sol. Found Average Sol. Time (s)

MANN_a9 45 0.927 16 16 14.98 0.01

MANN_a27 378 0.990 126 121 119.21 4.32

MANN_a45 1035 0.996 345 334 331.57 87.78

c-fat200-1 200 0.077 12 12 11.64 0.48

c-fat200-2 200 0.163 24 24 22.47 0.47

c-fat200-5 200 0.426 58 58 57.25 0.42

hamming6-2 64 0.905 32 32 27.49 0.02

hamming6-4 64 0.349 4 4 4.00 0.02

hamming8-2 256 0.969 128 128 100.78 0.80

hamming8-4 256 0.639 16 16 12.49 1.13

hamming10-2 1024 0.990 512 512 359.53 90.11

johnson8-2-4 28 0.556 4 4 4.00 0.01

johnson8-4-4 70 0.768 14 14 11.22 0.02

johnson16-2-4 120 0.765 8 8 8.00 0.09

johnson32-2-4 496 0.879 16 16 16.00 10.20

keller4 171 0.649 11 9 7.54 0.28

san200_0.9_1 200 0.900 70 46 45.03 0.37

san200_0.9_2 200 0.900 60 37 34.94 0.38

san200_0.9_3 200 0.900 44 32 26.86 0.37

san400_0.9_1 400 0.900 100 51 50.01 2.54

3. As can be seen from the tables, the best solutions for almost all instances ob-
tained during the experiments can be found among the results for Algorithm 3 with
x0
i = 0, i = 1, . . . , n (see Table 3).

In Table 4 we compare these results with results for some other continuous
based heuristics for the maximum clique problem taken from (Bomze et al., 2000).
The columns ‘ARH’, ‘PRD(1

2)’, ‘PRD(0)’ and ‘CBH’ contain the size of a clique
found using the annealed replication heuristic (Bomze et al., 2000), the plain rep-
licator dynamics applied for two different parameterizations (with parameters 1

2
and 0) of the Motzkin–Straus formulation (Bomze et al., 1997), and the heuristic
proposed in Gibbons et al. (1996), respectively. The column ‘A3(0)’ represents the
results for Algorithm 3 with x0

i = 0, i = 1, . . . , n.

FINDING INDEPENDENT SETS IN A GRAPH 135

Table 3. Results on benchmark instances: Algorithms 1–3, x0
i = 0, for i = 1, . . . , n.

Name Nodes Dens. ω(G) Sol. Found Time (s)

A1 A2 A1 A2 A1 A2

MANN_a9 45 0.927 16 16 9 16 0.01 0.01 0.01

MANN_a27 378 0.990 126 125 27 125 8.17 2.01 3.72

MANN_a45 1035 0.996 345 340 45 342 170.31 36.42 79.15

c-fat200-1 200 0.077 12 12 12 12 34.13 0.48 1.59

c-fat200-2 200 0.163 24 24 24 24 33.15 0.79 0.92

c-fat200-3 200 0.426 58 58 58 58 21.63 0.48 12.02

hamming6-2 64 0.905 32 32 32 32 0.23 0.03 0.05

hamming6-4 64 0.349 4 2 4 4 0.42 0.03 0.06

hamming8-2 256 0.969 128 128 128 128 4.57 0.89 1.32

hamming8-4 256 0.639 16 16 16 16 39.07 1.98 1.79

hamming10-2 1024 0.990 512 512 512 512 508.30 35.97 82.19

johnson8-2-4 28 0.556 4 4 4 4 0.01 0.01 0.01

johnson8-4-4 70 0.768 14 14 14 14 0.33 0.02 0.03

johnson16-2-4 120 0.765 8 8 8 8 1.56 0.09 0.19

johnson32-2-4 496 0.879 16 16 16 16 191.24 5.97 9.81

keller4 171 0.649 11 7 7 11 7.99 0.18 0.43

san200_0.9_1 200 0.900 70 42 43 47 3.19 0.27 0.56

san200_0.9_2 200 0.900 60 29 36 40 3.21 0.27 0.54

san200_0.9_3 200 0.900 44 29 21 34 3.05 1.04 0.48

san400_0.9_1 400 0.900 100 52 35 75 88.47 3.28 6.55

These computational results are preliminary and more experiments are needed
to determine if this approach is computationally competitive with other methods
for the maximum clique problem.

10. Conclusion

We give deterministic proofs of two continuous formulations for the maximum in-
dependent set problem and their generalizations for dominating sets. We show that
the celebrated Motzkin–Straus theorem can be obtained from these formulations
and we offer three syntactically related polynomial time algorithms for finding
maximal independent sets. We report on a preliminary computational investigation

136 JAMES ABELLO ET AL

Table 4. Results on benchmark instances: comparison with other continuous based approaches.
x0
i

= 0, i = 1, . . . , n.

Name Nodes Dens. ω(G) Sol. Found

ARH PRD(1
2) PRD(0) CBH A3(0)

MANN_a9 45 0.927 16 16 12 12 16 16

MANN_a27 378 0.990 126 117 117 117 121 125

keller4 171 0.649 11 8 7 7 10 11

san200_0.9_1 200 0.900 70 45 45 45 46 47

san200_0.9_2 200 0.900 60 39 36 35 36 40

san200_0.9_3 200 0.900 44 31 32 33 30 34

san400_0.9_1 400 0.900 100 50 40 55 50 75

of these algorithms. A more complete computational investigation is needed to de-
termine if this approach is competitive with existing approaches for the maximum
independent set problem.

Acknowledgements

We would like to thank Immanuel Bomze and Stanislav Busygin for their valuable
comments which helped us to improve the paper.

References

Abello, J., Pardalos, P.M. and Resende, M.G.C. (2000), On maximum clique problems in very large
graphs, in: Abello, J. and Vitter, J.S. (eds.), External memory algorithms, Vol. 50 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society, pp. 119–130.

Avondo-Bodeno, G. (1962), Economic applications of the theory of graphs. Gordon and Breach
Science, New York.

Balas, E. and Yu, C. (1986), Finding a maximum clique in an arbitrary graph. SIAM J. on Computing
15: 1054–1068.

Berge, C. (1962), The theory of graphs and its applications. Methuen.
Bomze, I.M., Budinich, M. Pardalos, P.M. and Pelillot, M. (1999), The maximum clique prob.em. in:

Du, D.-Z. and Pardalos, P.M. (eds.) Handbook of Combinatorial Oprtimization. Kluwer Acad.
Publishers, Dordrecht, pp. 1–74.

Bomze, I.M., Budinich, M., Pelillo, M. and Rossi, C. (2000), A new ‘annealed’ heuristic for the
maximum clique problem, in: Pardalos, P.M. (ed.) Approximation and complexity in Numerical
Optimization: Continuous and Discrete Problems. Kluwer Acad. Publishers, Dordrecht pp. 78–
96.

Bomze, I.M., Pelillo, M. and Giacomini, R. (1997), Evolutionary approach to the maximum
clique problem: empirical evidence on a larger scale, in: Bomze, I.M., Csendes, T., Horst,

FINDING INDEPENDENT SETS IN A GRAPH 137

R. and Pardalos, P.M. (eds.), Developments of Global Optimization. Kluwer Acad. Publishers,
Dordrecht, pp. 95–108.

Caro, Y. and Tuza, Z. (1991), Improved lover bounds on k-independence. J. Graph Theory 15, 99–
107.

Deo, N. (1974), Graph theory with applications to engineering and computer science. Prentice-Hall,
Englewood Cliffs, NJ.

Diestel, R. (1997) Graph Theory. Springer Berlin.
Gallai, T. (1959), Über extreme Punkt- und Kantenmengen, in: Ann. Univ. Sci. Budapest. Eötvös

Sect. Math., Vol. 2. pp. 133–138.
Garey, M. and Johnson, D. (1979), Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, San Francisco, CA.
Gibbons, L.E., Hearn, D.W. and Pardalos, P.M. (1996), A continuous based heuristic for the

maximum clique problem, in: Johnson, D.S. and Trick, M.A. (eds.) Cliques, Coloring and Sat-
isfiability: Second DIMACS Implementation Challenge, Vol 26 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society, pp. 103–124.

Grötschel, M., Lovász, L. and Schrijver, A. (1993), Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin. 2nd edition.

Harant, J. (2000), Some news about the independence number of a graph. Discussiones Mathemat-
icae Graph Theory 20, 71–79.

Harant, J., Pruchnewski, A. and Voigt, M. (1999), On dominating sets and independent sets of graphs.
Combinatgorics, Probability and Computing 8, 547–553.

Lovász, L. (1979), On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25, 1–7.
Motzkin, T.S. and Straus, E.G. (1965), Maxima for graphs and a new proof of a theorem of Turán.

Cand.J. Math. 17, 533–540.
Papadimitriou, C.H. and Steiglitz, K. (1988), Combinatorial Optimization: Algorithms and Complex-

ity. Dover Publications, Inc.
Pardalos, P.M. and Rodgers, G.P. (1992), A branch and bound algorithm for the maximum clique

problem. Computers Ops Res. 19, 363–375.
Pardalos, P.M. and Xue, J. (1992), The maximum clique problem. J. Global Optim. 4, 301–328.
Rizzi, R. (2000), A short proof of matching theorem. J. Graph Theory 33, 138–139.
Shor, N.Z. (1990), Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper.

Res. 25, 163–168.
Sós, V.T. and E.G. Straus (1982), Extremal of functions on graphs with applications to graphs and

hypergraphs. J. Combin. Theory B32, 246–257.
Trotter, L. Jr. (1973), Solution characteristics and algorithms for the vertex packing problem.

Technical Report 168, Dept. of Operatiosn Research, Cornell University, Ithaca, NY.
Wei, V.K. (1981), A lower bound on the stability number of a simple graph. Technical Report TM

81-11217-9, Bell Laboratories.

